
EE 049 613

AUTHOR
TITLE
INSTITUTION

SPONS AGENCY

BUREAU NO
PUE LATE
CCNTEACT
NOTE

EDFS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

1OCUMENT RESUME

4 EM 008 860

Fitzhugh, Robert J.; Chadwick, Martin M.
IMP: The LEDC Integrated Macro Package.
Pittsburgh Univ., Pa. Learning Research and
Development Center.
Office of Education (DHEW), Washington, D.C. Burc:au
of Research.
EP-5-0253
Dec 70
OEC-4-10-158(010)
112p.

EDPS Price MF-$0.65 HC-$6.58
Computer Assisted Instruction, *Computer Based
Laboratories, *Computer Programs, *Guides, Input
Output, *Programing, *Programing Languages, Time
Sharing
IMF, *Integrated Macro Package

The Learning Research and Development Center
Time-Sharing System (IRDC/TSS) supports numerous non-standard devices
and terminals and provides a variety cf powerful programing options,
enabling the researcher to maintain close control over the
experimental Environment. To achieve this degree of flexibility, it
was necessary to write programs exclusively in assembly languarde,
which made program development time consuming and produced programs
that were difficult to "debug." The integrated Macro Package (IMF)
was developed tc provide a programing aid which does not become
involved in the problems of compiler writing. It provides a
programing structure and a body cf debugged and documented routines
tc programers rho write for the LRDC/TSS. Although it is used largely
for computer-assisted instruction and on-line laboratory application,
most of the routines are general purpose. IMP has a conditional
assembly feature, which permits the programer to identify sections of
the code that should be assembled only if a specified condition is
mGt. This guide defines the conventions governing memory allocation,
subroutine cells, input/output, and some miscellaneous function
routines. This IMP-type solution would seem to be appropriate for
laboratory installations with smaller computers and applications for
which there are nc suitable, higher level languages available.
(Author/JY)

U
N

IV
E

R
S

IT
Y

 O
F

 P
IT

T
S

B
U

R
G

H
 - LE

A
R

N
IN

G
 R

 &
 D

 C
E

N
T

E
R

1

£196'0C
13

IM
P

 T
H

E
 LR

D
C

 IN
T

E
G

R
A

T
E

D
 M

A
C

R
O

 P
A

C
K

A
G

E
1971/2

R
O

B
E

R
T

 J. F
IT

Z
H

U
G

H
 A

N
D

 M
A

R
T

IN
 M

. C
H

A
D

W
IC

K

0,8 800W
 3

U.S. DEPARTMENT OF HEALTH. EDUCATIDN
Et WELFARE

OFFICE OF EDUCATIDN
THIS DOCUMENT HAS SEEN REPRODUCED
EXACTLY AS RECEIVED FRO M THE PEFISON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DD NOT NECES-
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

IMP

THE LRDC INTEGRATED MACRO PACKAGE

Robert J. Fitzhugh and Martin M. Chadwick

Learning Research and Development Center

University of Pittsburgh

December 1970

The research reported herein was performed pursuant to Contract
N00014-67-A-0402-0006 (NR 154-262) with the Personnel and Training
Branch Psychological Sciences Division, Office of Naval Research.
The document is a publication of the Learning Research and
Development Center, supported in part as a research and development
center by funds from the United States Office of Education,
Department of Health, Education and Welfare.

2

PREFACE

This document describes the LRDC Integrated Macro Package

(IMP). IMP operates with the Digital Equipment Corporation's

MACRO-9 Assembler, and knowledge of that system is assumed.

The authors wish to thank the members of the Applications

Programming Group, particularly Mr. William Schmiedlin and

Mr. Raymond McKnight, for their contributions to the development

of IMP.

iii

1111Mor

TABLE OF CONTENTS

PREFACE iii

1.0 INTRODUCTION 1

2.0 GENERAL DESCRIPTION 3

3.0 USE AND OPERATION OF IMP 11

4.0 IMP ROUTINES 16

4.1 SUBROUTINE CALL ROUTINES 16

4.2 MEMORY ALLOCATION ROUTINES 21

4.3 INPUT/OUTPUT ROUTINES 27

4.4 MISCELLANEOUS FUNCTION ROUTINES 65

REFERENCES 89

APP Noix A: RESERVED WORDS 90

APPENDIX B: I/O PARAMETER LISTS 91

APPENDIX C: ERROR CODES 93

APPENDIX D: IMP EQUIVALENCES 96

APPENDIX E: CRT CHARACTER SIZE CHART 100

iv

4

1.0

INTRODUCTION

5

1.0 INTRODUCTION

The Computer Facility of the Learning Research and Development

Center of the University of Pittsburgh supports an on-line behavioral

science laboratory as well as computer-assisted instruction (CAI)

research and development. The computer system is built around a 32K

Digital Equipment Corporation PDP-7, a single-address, 18-bit word

machine with a 1.75 microseconds cycle time. Sixteen of the 32K in

the i'DP-7 are obtained from a PDP-9 whose memory the PDP-7 is able to

access through a special interface developed at LRDC. A time-sharing

system called the LRDC Time-Sharing System (LRDC/TSS) has been

developed for this system and has been in operation for several years.

The LRDC/TSS supports numerous non-standard devices and

terminals and provides a variety of powerful programming options,

enabling the researcher to maintain close control over the

experimental environment. The cost of this flexibility, however, is

programming complexity. Available higher level languages such as

FORTRAN were found to be unsuitable, forcing programmers to write

exclusively in assembly language. Program development time was

typically long and programs were difficult to debug. The Integrated

Macro Package (IMP) was developed as a partial solution to these

problems.

Although some of the features of IMP were designed to meet

requirements specific to the LRDC configuration, the package has a

number of characteristics which should be of interest to those

facing similar problems. Given a good macro assembler of the type

available on many computers, IMP illustrates how it is possible to

provide a significant programming aid without becoming involved in

the problems of compiler writing. A package of this sort can be

developed and refined over time by an assembly language programmer

with no prior experience in programming language development. It

can be as extensive or as limited as is desired and can be tailored

to meet specific application or r.onfiguration requirements. This

1

IMP solution would seem to be appropriate for many laboratory

installations with smaller computers and applications for which

there are no suitable higher level languages available.

IMP is the simplified, linear descendent of an earlier effort

called SKOOLBOL (Nemitz). SKOOLBOL incorporated a number of clever

design notions and was an early attempt at a computer-assisted

instruction and psychological experimentation langu:7Te. The language

had a "COBOL-like" appearance and was designed to provide programmers

with a natural, English-like command set.

A full compiler was never developed for SKOOLBOL, although one

was discussed and partially designed. The actual compilation

procedure used involved a two-step process of preassembly and

assembly. The pre-assembler was a separate program which did little

mole than restructure the SKOOLBOL source lines into a form

acceptable to the manufacturer's MACRO-9 Assembler. The pre-

assembler punched the restructured SKOOLBOL program on cards which

were then assembled much like a normal assembly language program.

Although these procedures were cumbersome and time-consuming,

SKOOLBOL failed to gain wide acceptance for other, more fundamental,

reasons. Viewed historically, the desire to develop an "English-

like" language was probably premature and perhaps unnecessary.

Considerable programming power and flexibility was lost in return

for a concise, English-like structure, and programmers faced with

complex problems were often forced to return to assembly language.

In addition, SKOOLBOL programs required a core-resident and non-

relocatable subroutine package which was of fixed size and which

included all routines, whether or not they were referenced. Because

of these difficulties, the decision was made to abandon SKOOLBOL in

favor of the Integrated Macro Package, an extensive package of

macro functions which can be called by programmers writing in

assembly language. The version of IMP described in this document

has been in active use for over one year and has proved to be a

practical and satisfactory compromise between a higher level

. language and pure assembly language programming.

2

2 . 0

GENERAL DESCRIPTION

2.0 GENERAL DESCRIPTION

The Integrated Macro Package (IMP) prov.des a programming

structure and a body of commonly-used routines to application

programmers who write in PDP-9 assembly language for the LRDC Time-

Sharing System. IMP is a programming aid rather than a "language,"

although a number of higher-level services are provided. Nonetheless,

programmers do not write "in" IMP but rather us, it as a programming

tool. A structure or framework is provided sin:e IMP handles

subroutine calls, memory allocation, variable slarage, and input/

output requests. Because the programmer workini with IMP can call

upon a set of well-debugged and documented routines, both programming

and debugging time is reduced. Most of these routines are general-

purpose, and to that extent, IMP should not be considered a

specialized package intended only for computer - assisted instruction

(CAI) or on-line laboratory applications. Its Primary purpose is to

reduce programming overhead without sacrificing (the power and

flexibility of assembly language-programming.

The full Integrated Macro Package occupi -; approximately 1.5K,

or less than 20% of the memory available to each applications program

operating under the LRDC Time-Sharing System. Since most applications

programs use less than 50% of the available IN? routines, only those

routines required are loaded with each applications program. This

selective loading is accomplished through the use of the conditional

assembly option of the PDP-9 assembler. This option permits the

programmer to identify sections of code that should only be assembled

if a specified condition is met. One of thes, conditions is whether

or not a symbolic name has een encountered a. d defined earlier in

the assembly process. This is specified by p:eceding the conditional

portion of the program with the statement ".I:!DEF" and following it

with the statement ".ENDC." If the variable name is defined when the

assembler encounters the ".IFDEF" statement, :he program up to the

".ENDC" statement is assembled in a normal fashion. If the name is

undefined, the conditional portions appear on the listing but are

not assembled.

3

9

All IMP routines are conditionally defined in the IMP source

code with the condition being the prior definition of the routine

name. Since the entire IMP source deck is placed behind each program

to be assembled, only those IMP routines referenced are assembled with

the program. Figures 2.1 and 2.2 illustrate the conditional assembly

of the IMP routine MOVE. The original and unassembled source code

for the routine is shown in Figure 2.1. The conditional that must be

satisfied to generate an assembly of the routine is the statement

".IFDEF MOVE." If an applications programmer referenced the routine,

as in the following example:

CALL MOVE /REFERENCE TO IMP ROUTINE

the condition would be satisfied and the routine would be assembled

with the program,as in Figure 2.2.

IMP itself uses this conditional assembly feature. Many IMP

routines reference other IMP routines as well as a number of secondary

routines internal to the package. To fully eliminate unused portions,

all routines are conditionally coded and are assembled only when

required. This is illustrated in Figures 2.3 through 2.6 with the

routines "TYPE" and "SK11NT". When the applications programmer uses

the routine "ii,77.", the conditional statement ".IFDEF TYPE" is

satisfied, and the unassembled source code in Figure 2.3 is assembled,

as shown in Figure 2.5. When "TYPE" is assembled, the symbol "SK11NT"

is defined, and that routine, shown in Figure 2.4, is conditionally

assembled and included in the program, shown in Figure 2.6. This

nesting of conditionals within IMP will, in many instances, extend

as far as four routines deep.

4

i0:

.IF DEF MOVE

/MOVE A ROUTINE TO MOVE ONE OR MORE CELLS FROM

/SK48 ONE SPECIFIED STORAGE AREA TO ANOTHER. THE DATA
TO BE MOVED MUST BE TERMINATED WITH AN ASTERISK IN
THE LOW ORDER HALF OF A WORD IN EITHER PACKED
(2 PER WORD) OR UNPACKED ASCII

CALLING SEQUENCE;
ON INPUT SOURCE = ADDRESS OF SENDING FIELD

RECEVE = ADDRESS OF RECEIVING FIELD
CALL MOVE
RETURNS HERE

MOVE LAM /LOAD A MINUS ONE
TAD SOURCE /ADP ADDRESS OF SENDING FIELD
DAC 10 /STORE IN AI-10
LAM /LOAD A MINUS ONE
TAD RECEVE /ADD ADDRESS OF RECEIVING FIELD

DAC 11 /STORE IN AI-11

SK48A LAC* 10 /LOAD VALUE TO BE MOVED

DAC* 11 /STORE IN RECEIVING FIELD

AND (777) /MASK OFF HIGH ORDER BITS
SAD (.AST) /TERMINATINC AST?

JMP POPJ /YES, RETURN TO CALLER

JMP SK48A /NO, GO BACK TO MOVE MORE

.ENDC

.EJECT

Figure 2.1

.
I
F

D
E
F

M
O
V
E

/
M
O
V
E

/
S
K
4
8

/ / /

A

R
O
U
T
I
N
E

T
O

M
O
V
E

O
N
E

O
R

M
O
R
E

C
E
L
L
S

F
R
O
M

O
N
E

S
P
E
C
I
F
I
E
D

S
T
O
R
A
G
E

A
R
E
A

T
O

A
N
O
T
H
E
R
.

T
H
E

D
A
T
A

T
O

B
E

M
O
V
E
D

M
U
S
T

B
E

T
E
R
M
I
N
A
T
E
D

W
I
T
H

A
N

A
S
T
E
R
I
S
K

I
N

T
H
E

L
O
W

O
R
D
E
R

H
A
L
F

O
F

A

W
O
R
D

I
N

E
I
T
H
E
R

P
A
C
K
E
D

(
2

P
E
R

W
O
R
D
)

O
R

U
N
P
A
C
K
E
D

A
S
C
I
I

/
C
A
L
L
I
N
G

S
E
Q
U
E
N
C
E
:

/
O
N

I
N
P
U
T

S
O
U
R
C
E

=

A
D
D
R
E
S
S

O
F

S
E
N
D
I
N
G

F
I
E
L
D

/
R
E
C
E
V
E

=

A
D
D
R
E
S
S

O
F

R
E
C
E
I
V
I
N
G

F
I
E
L
D

/
C
A
L
L

M
O
V
E

/
R
E
T
U
R
N
S

H
E
R
E

/

5
1
3
5
5

7
7
7
7
7
7

M
O
V
E

L
A
M

/
L
O
A
D

A

M
I
N
U
S

O
N
E

5
1
3
5
6

3
4
0
4
1
6

T
A
D

S
O
U
R
C
E

/
A
D
D

A
D
D
R
E
S
S

O
F

S
E
N
D
I
N
G

F
I
E
L
D

5
1
3
5
7

0
4
0
0
1
0

D
A
C

1
0

/
S
T
O
R
E

I
N

A
I
-
1
0

5
1
3
6
0

7
7
7
7
7
7

L
A
M

/
L
O
A
D

A

M
I
N
U
S

O
N
E

5
1
3
6
1

3
4
0
4
1
7

T
A
D

R
E
C
E
V
E

/
A
D
D

A
D
D
R
E
S
S

O
F

R
E
C
E
I
V
I
N
G

F
I
E
L
D

5
1
3
6
2

0
4
0
0
1
1

D
A
C

1
1

/
S
T
O
R
E

I
N

A
I
-
1
1

5
1
3
6
3

2
2
0
0
1
0

S
K
4
8
A

L
A
C
*

1
0

/
L
O
A
D

V
A
L
U
E

T
O

B
E

M
O
V
E
D

5
1
3
6
4

0
6
0
0
1
1

D
A
C
*

1
1

/
S
T
O
R
E

I
N

R
E
C
E
I
V
I
N
G

F
I
E
L
D

5
1
3
6
5

5
1
1
5
7
3

A
N
D

(
7
7
7
)

/
M
A
S
K

O
F
F

H
I
G
H

O
R
D
E
R

B
I
T
S

5
1
3
6
6

5
5
1
5
3
6

S
A
D

(
.
A
S
T
)

/
T
E
R
M
I
N
A
T
I
N
G

A
S
T
?

5
1
3
6
7

6
1
1
4
2
1

J
M
P

P
O
P
J

/
Y
E
S
,

R
E
T
U
R
N

T
O

C
A
L
L
E
R

5
1
3
7
0

6
1
1
3
6
3

J
M
P

S
K
4
8
A

/
N
O
,

G
O

B
A
C
K

T
O

M
O
V
E

M
O
R
E

.
E
N
D
C

.
E
J
E
C
T

F
i
g
u
r
e

2
.
2

.IF DEF TYPE
/TYPE A ROUTINE TO HANDLE THE PRINTING OF MESSAGES ON THE
/SK11 TELETYPES. THE MESSAGE MUST CONTAIN THE NUMBER OF CHARACTERS

FOR PRINTING IN TH6 FIRST BUFFER WORD. PARAMETER LIST
DEFAULTS TO A SUSPENDED PRINT

CALLING SEQUENCE:
SOURCE=BUFFER ADDRESS-15 BITS
CALL TYPE
TTY1 TTY2 OR TTY3-TELETYPE NUMBER EQUIVALENCE
RETURNS HERE

TYPE ISZ* STKPTR /INCREMENT RETURN ADDRESS
LAC* PUSHJ3 /LOAD TELETYPE NO.
JMP SK11NT
.ENDC

Figure 2.3

7

13

.IF DEF SK11NT
SK11NT TAD (-1) /SUBTRACT ONE

DAC SKC27 /STORE OFFSET IN SKC27
TAD SKC25 /ADD MEMAL BASE ADDRESS
TAD (30) /ADD OFFSET TO FIRST PRINT PARAMETER WORD
DAC SKC28 /STORE POINTER IN SKC28
?.AC (33) /LOAD OFFSET TO BAGTEL PARAMETER LIST
TAD SKC25 /ADD MEMAL BASE ADDRESS
DAC SKC29 /STORE IN SKC29
DAC SKC30 /STORE IN SKC30
LAC* SKC28 /LOAD PARAMETER WORD 0
DAC* SKC29 /STORE IN PARAMETER LIST
ISZ SKC29 /INCREMENT POINTER
DZM* SKC29 /ZERO PARAMETER WORD 1
ISZ SKC29 /INCREMENT POINTER
LAC SOURCE /LOAD MESSAGE ADDRESS
DAC* SKC29 /STORE IN PARAMETER WORD 2
LAC SKC30 /RELOAD PARAMETER LIST BASE ADDRESS
TAD (500000) /ADD PRINT COMMAND
EEM /ENABLE EXTEND MODE
DPI /DISABLE API
JMS* TRNVEC /TRANSFER TO SYSTEM ROUTINE - BAGTEL/D-PHONE
SZL /REQUEST ERROR
JMP SK11A /YES-GO PROCESS
JMP POPJ /NO-RETURN TO CALLER

SK11A LAW 146 /LOAD BASIC ERROR CODE
TAD SKC27 /ADD TELETYPE NUMBER OFFSET
JMP ERROR /GO TO ERROR ROUTINE
.ENDC
.EJECT

Figure 2.4

8

14

c
o

I
F

D
E
F

T
Y
P
E

/
T
Y
P
E

A

R
O
U
T
I
N
E

T
O

H
A
N
D
L
E

T
H
E

P
R
I
N
T
I
N
G

O
F

M
E
S
S
A
G
E
S

O
N

T
H
E

/
S
K
1
1

T
E
L
E
T
Y
P
E
S
.

T
H
E

M
E
S
S
A
G
E

M
U
S
T

C
O
N
T
A
I
N

T
H
E

N
U
M
B
E
R

O
F

C
H
A
R
A
C
T
E
R

F
O
R

P
R
I
N
T
I
N
G

I
N

T
H
E

F
I
R
S
T

B
U
F
F
E
R

W
O
R
D
.

P
A
R
A
M
E
T
E
R

L
I
S
T

D
E
F
A
U
L
T
S

T
O

A

S
U
S
P
E
N
D
E
D

P
R
I
N
T

C
A
L
L
I
N
G

S
E
Q
U
E
N
C
E
:

S
O
U
R
C
E
u
B
U
F
F
E
R

A
D
D
R
E
S
S
-
1
S

B
I
T
S

C
A
L
L

T
Y
P
E

T
T
Y
2

O
R

T
T
Y
3
-
T
E
L
E
T
Y
P
E

N
U
M
B
E
R

E
Q
U
I
V
A
L
E
N
C
E

R
E
T
U
R
N
S

H
E
R
E

/
5
0
7
6
1

4
6
0
4
0
1

T
Y
P
E

I
S
Z
*

S
T
K
P
T
R

/
I
N
C
R
E
M
E
N
T

R
E
T
U
R
N

A
D
D
R
E
S
S

5
0
7
6
2

2
2
0
4
6
3

L
A
C
*

P
U
S
H
J
3

/
L
O
A
D

T
E
L
E
T
Y
P
E

N
O
.

5
0
7
6
3

6
1
1
0
2
3

J
M
P

S
K
1
1
N
T

.
E
N
D
C F
i
g
u
r
e

2
.
5

/ /

.
I
F

D
E
F

S
K
1
1
N
T

5
1
0
2
3

3
5
1
5
5
0

S
K
1
1
N
T

T
A
D

(
-
1
)

/
S
U
B
T
R
A
C
T

O
N
E

5
1
0
2
4

0
4
0
4
3
2

D
A
C

S
K
C
2
7

/
S
T
O
R
E

O
F
F
S
E
T

I
N

S
K
C
2
7

5
1
0
2
5

3
4
0
4
3
0

T
A
D

S
K
C
2
5

/
A
D
D

M
E
M
A
L

B
A
S
E

A
D
D
R
E
S
S

5
1
0
2
6

3
5
1
5
3
5

T
A
D

(
3
0
)

/
A
D
D

O
F
F
S
E
T

7
1
1

F
I
R
S
T

P
R
I
N
T

P
A
R
A
M
E
T
E
R

W
O
R
D

5
1
0
2
7

0
4
0
4
3
3

D
A
C

S
K
C
2
8

/
S
T
O
R
E

P
O
I
N
T
E
R

I
N

S
K
C
2
8

5
1
0
3
0

2
1
1
7
1
5

L
A
C

(
3
3
)

/
L
O
A
D

O
F
F
S
E
T

T
O

B
A
G
T
E
L

P
A
R
A
M
E
T
E
R

L
I
S
T

5
1
0
3
1

3
4
0
4
3
0

T
A
D

S
K
C
2
5

/
A
D
D

M
E
M
A
L

B
A
S
E

A
D
D
R
E
S
S

5
1
0
3
2

0
4
0
4
3
4

D
A
C

S
K
C
2
9

/
S
T
O
R
E

I
N

S
K
C
2
9

5
1
0
3
3

0
4
0
4
3
5

D
A
C

S
K
C
3
0

/
S
T
O
R
E

I
N

S
K
C
3
0

5
1
0
3
4

2
2
0
4
3
3

L
A
C
*

S
K
C
2
8

/
L
O
A
D

P
A
R
A
M
E
T
E
R

W
O
R
D

0

5
1
0
3
5

0
6
0
4
3
4

D
A
C
*

S
K
C
2
9

/
S
T
O
R
E

I
N

P
A
R
A
M
E
T
E
R

L
I
S
T

5
1
0
3
6

4
4
0
4
3
4

I
S
Z

S
K
C
2
9

/
I
N
C
R
E
M
E
N
T

P
O
I
N
T
E
R

5
1
0
3
7

1
6
0
4
3
4

D
Z
M
*

S
K
C
2
9

/
Z
E
R
O

P
A
R
A
M
E
T
E
R

W
O
R
D

1

- o
5
1
0
4
0

5
1
0
4
1

4
4
0
4
3
4

2
0
0
4
1
6

I
S
Z

L
A
C

S
K
C
2
9

S
O
U
R
C
E

/
I
N
C
R
E
M
E
N
T

P
O
I
N
T
E
R

/
L
O
A
D

M
E
S
S
A
G
E

A
D
D
R
E
S
S

5
1
0
4
2

0
6
0
4
3
4

D
A
C
*

S
K
C
2
9

/
S
T
O
R
E

I
N

P
A
R
A
M
E
T
E
R

W
O
R
D

2

5
1
0
4
3

2
0
0
4
3
5

L
A
C

S
K
C
3
0

/
R
E
L
O
A
D

P
A
R
A
M
E
T
E
R

L
I
S
T

B
A
S
E

A
D
D
R
E
S
S

5
1
0
4
4

3
5
1
6
5
2

T
A
D

(
5
0
0
0
0
0
)

/
A
D
D

P
R
I
N
T

C
O
M
M
A
N
D

5
1
0
4
5

7
0
7
7
0
2

E
E
M

/
E
N
A
B
L
E

E
X
T
E
N
D

M
O
D
E

5
1
0
4
6

7
0
0
0
0
1

D
P
I

/
D
I
S
A
B
L
E

A
P
I

5
1
0
4
7

1
2
0
4
4
3

J
M
S
*

T
R
N
V
E
C

/
T
R
A
N
S
F
E
R

T
O

S
Y
S
T
E
M

R
O
U
T
I
N
E

-

B
A
G
T
E
L
/
D
-
P
E
O
N
E

5
1
0
5
0

7
4
1
4
0
0

S
Z
L

/
R
E
Q
U
E
S
T

E
R
R
O
R

5
1
0
5
1

6
1
1
0
5
3

J
M
P

S
K
1
1
A

/
Y
E
S
-
G
O

P
R
O
C
E
S
S

5
1
0
5
2

6
1
1
4
2
1

J
M
P

P
O
P
J

/
N
O
-
R
E
T
U
R
N

T
O

C
A
L
L
E
R

5
1
0
5
3

7
6
0
1
4
6

S
K
1
1
A

L
A
W

1
4
6

/
L
O
A
D

B
A
S
I
C

E
R
R
O
R

C
O
D
E

5
1
0
5
4

3
4
0
4
3
2

T
A
D

S
K
C
2
7

/
A
D
D

T
E
L
E
T
Y
P
E

N
U
M
B
E
R

O
F
F
S
E
T

5
1
0
5
5

6
1
0
7
5
4

J
M
P

E
R
R
O
R

/
G
O

T
O

E
R
R
O
R

R
O
U
T
I
N
E

.
E
N
D
C

.
E
J
E
C
T

F
i
g
u
r
e

2
.
6

3.0

USE AND OPERATION OF IMP

3.0 USE AND OPERATION OF IMP

Assembly language programs using IMP must obey a set of

programming conventions governing memory allocation, subroutine calls,

communication with IMP, the naming of routines and variables, and

error handling. These conventions define the interface between the

user program and IMP as well as ensure that user programs are fully

reentrant. Since the LRDC Time-Sharing System is not a swapping

system, memory is used most efficiently if user programs are reentrant,

and many of the features of IMP were developed to meet this requirement.

In a reentrant program, pure executable code is shared and

executed by more than one user. However, each user's program variables,

subroutine returns, and user-specific data must be isolated and

protected from that of other users. Two memory allocation schemes

are provided by the LRDC/TSS for this purpose. In the first, a block

of memory called COMMON is shuffled to and from lower core by the

time-sharing system. Each user has his own copy of COMMON, and this

is restored to its proper place by the system immediately prior to

the user's execution. The COMMON block begins at location 4008 of

each 8K field and must not exceed 1000 words in length. Since this

area is protected by the system, program variables stored in COMMON

may be directly addressed by reentrant programs, simplifying

programming.

The second scheme is called MEMAL, or MEMory ALlocation. A

portion of each field of memory is reserved as a pool of available

space which may be allocated on demand to any user executing within

that field. A user who requires space calls the system routine MEMAL,

specifying the number of contiguous locations desired. If space is

available, MEMAL returns to the user with the address of the

allocated memory block. Since each user executing the reentrant

program makes a separate call upon MEMAL, a different memory block is

allocated to each user, which ensures that information stored in MEMAL-

obtained space is protected from inter user interference. Because

11

111.6111
18

the address of the MEMAL block is not known when a program is

written, the address must be stored as a protected variable in COMMON.

To access a particular location in the MEMAL space, the reentrant

program must add a displacement value to the MEMAL base address in

order to compute the actual address.

Both COMMON and MEMAL are supported and used by IMP. To obtain

COMMON space, the user calls the general initialization routine,

LOGON (see 4.2.1 LOGON for details). Of the total space requested,

locations 4008 through 4708 always are reserved for use by IMP for

the storage of subroutine returns and special IMP variables.

Subroutine returns are stored in COMMON in a push-down stack

maintained by the IMP routines PUSHJ and POPJ. Programs using IMP

do not use the normal JMS instruction, but call PUSHJ, specifying the

address of the subroutine:

JMS PUSHJ

SUBR

PUSHJ computes the subroutine return address, adds it to the top of

the push-down stack, and transfers control to the user subroutine.

To return to the caller, the subroutine transfers control to the IMP

routine POPJ:

JMP POPJ /EXIT FROM SUBROUTINE

POPJ removes the top-most entry from the subroutine stack, stores it

as the return address, "pops" the stack upward, and transfers control

to the return address. Subroutines may be nested as deeply as there

12

are available entries in the push-down stack. At LRDC, a maximum

stack size of 10 has proved to be adequate for even the most complex

CAI program.

To simplify programming, IMP provides two macros which expand

into calls upon PUSHJ and POPJ. To call a subroutine, the user

writes:

CALL SUBR

This is expanded by the assembler into:

sm. IMP 110

CALL SUBR

GEN* JMS PUSHJ

GEN* SUBR

IN& OM IN& I.

=01

/CALL TO SUBROUTINE

/POINT OF RETURN

/CALL TO SUBROUTINE

/POIINT OF RETURN

To return from a. subroutine, the user writes RETURN:

This is expanded into:

RETURN /EXIT FROM SUBROUTINE

RETURN /EXIT FROM SUBROUTINE

GEN* JMP POPJ

These macros are provided for convenience only, and direct calls to

PUSHJ and POPJ are permissable.

13

20t

The PUSHJ/POPJ routines provide two primary benefits. The

writing of reentrant programs is facilitated since subroutine returns

are automatically stored and protected in COMMON. Secondly, the push-

down stack provides a partial trace of program flow which is useful

when debugging. Through an examination of the contents of the push-

down stack, programmers are often able to quickly locate bugs or

points of difficulty.

Two other stack manipulation routines are available in the IMP

package. The routine PARAM allows a subroutine to retrieve a

parameter located immediately after the call, and also, to properly

adjust the return address in the push-down stack. STEPUP merely

advances the return address a specified nunber of locations. Full

details on these routines can be found in sections 4.1.2 PARAM and

4.1.3 STEPUP.

In addition to subroutine returns, a number of key IMP variables

are located in COMMON where they may be directly addressed. These

variables are the primary means of communication between a user

program and IMP and have been assigned unique names which identify

their function or purpose. For example, the IMP routine DIVIDE

expects to find the dividend and divisor the variable locations

called SOURCE and RECEVE. DIVIDE returns to the caller with the

quotient and remainder in the variable llcations ANSWER and REMAIN.

Users are discouraged from using thlese IMP variables for any

purpose other than to communicate with IMP. IMP makes internal use

of many of these variables as temporary word space to reduce its

COMMON requirement. The current version of IMP reserves only 10% of

the available COMMON space so that users should not be forced to use

these IMP va= riables because of space limitations.

The IMP variables and their major functions are:

ADRESS -- returns addresses calculated by IMP

ANSWER -- returns subject responses or the most

significant digits of a numeric answer

14

21

CONTEN -- returns the contents of a specified

MEMAL location

RECEVE -- passes to IMP the second value to be

used in a calculation or the second

parameter for an I/O routine

REMAIN -- returns the least significant digits of

a calculation

SLIDE -- passes a projector slide number to the

projector routine LOCATE

SOURCE -- used as an input parameter to most IMP

routines for a variety of purposes

TIME -- returns time-of-day or response latency

In addition to COMMON, IMP supports MEMAL and provides routines

to acquire, store data in, and retrieve data from MEMAL space. The

IMP routine DEFINE acquires and names blocks of space up to the

total amount aysilabla in the MEMAL pool. (See 4.2.2 DEFINE for full

details.) The routine FIND locates a named location in MEMAL space

and returns its address and contents to the caller. STORE allows

the user to deposit a value in a named MEMAL location. These

routines greatly simplify programming by computing the actual address

from a MEMAL block base address and a displacement value. (See 4.2.3

FIND and 4.2.4 STORE for full details.)

Program error detection and handling is another feature of the

IMP package. With the one exception of the routine DISK, all errors

detected by IMP are passed to the IMP error handler, ERROR. ERROR

calls the system error routine SYSERR with a unique error code which

is printed on the operator's console. The user's program is then

placed in an inactive state pending operator intervention. Errors

detected by the routine DISK often indicate "normal" conditions such

as end-of-file and are returned to the user program rather than

passed to ERROR. Error codes returned by the DISK routine are

described in section 4.3.24 DISK. All IMP error codes are listed in

Appendix C.

15

22

4.0

IMP ROUTINES

2

4.1

SUBROUTINE CALL ROUTINES

24

4.0 IMP ROUTINES

4.1 SUBROUTINE CALL ROUTINES

4.1.1 PUSHJ/POPJ

4.1.1.1 FUNCTION

PUSIIJ and POPJ are used to call

subroutines and return from them. Instead of

directly calling a subroutine, the user passes

the subroutine address to PUSIIJ. PUSIIJ

determines the origin of the call, stores the

return address in a push-down stack, and passes

control to the subroutine. When the user desires

to return from the subroutine, POPJ is called,

which 'pops-up' the push-down stack and passes

control to the address at the top of the stack.

The push-down stack is currently 10 deep so

subroutines may be nested to that depth.

Within IMP, two macros using PUSIIJ

and POPJ have been defined to simplify

programming. The macro "CALL' has the subroutine

address as a single argument as follows:

form :

CALL SUBROUTINE

This macro expands in the following

JMS PUSIIJ

SUBROUTINE

The macro 'RETURN' has no arguments

and expands into:

JMP POPJ

16

25

4.1.1.2 CALLING SEQUENCE

4.1.1.2.1 PARAMETERS

The subroutine address is

the only parameter required.

4.1.1.2.2 CALL

CALL ROUTINE

4.1.1.2.3 NORMAL RETURN

Control is returned to the

location following the call.

4.1.1.2.4 ERROR RETURN

Type 1 SYSERR codes:

163 -- Stack overflow -

PUSHJ

164 -- Stack underflow -

POPJ

4.1.1.2.5 RESTRICTIONS

a. The PUSHJ 'STACK' must

be initialized with the 'RESET' macro.

b. The user may not nest

more than 10 routines deep.

c. Every 'CALLed' routine

must be exited by a 'RETURN' statement.

d. User macro definition

must be present in the user's card

deck before 'RESET', 'CALL' or

'RETURN' macros are encountered.

4.1.1.3 EXAMPLE

To set up the PUSHJ STACK and call a

routine, 'SUBRTN°

RESET /MACRO TO SETUP STACK

/ASSEMBLER GENERATED CODE

/ASSEMBLER GENERATED CODE

/ASSEMBLER GENERATED CODE

17

CALL SUBRTN

GEN JMS PUSHJ

GEN SUBRTN

/CALL USER SUBRTN

/ASSEMBLER GENERATED CODE

/ASSEMBLER GENERATED CODE

/RETURN IS MADE HERE PROVIDED

/THAT SUBRTN IS EXITED BY

/'JMP POPJ'

18

27

4.1.2 PARAM

4.1.2.1 FUNCTION

PARAM enables the user to retrieve

one in-line parameter from the point of a

subroutine call.

4.1.2.2 CALLING SEQUENCE

4.1.2.2.1 PARAMETERS

None

4.1.2.2.2 CALL

Call PARAM

4.1.2.2.3 NORMAL RETURN

PARAM returns to the next

location after the call with the

parameter: CONTEN = In-line parameter

from calling routine.

4.1.2.2.4 ERROR RETURN

None

4.1.2.3 EXAMPLE

To pick up an in-line parameter needed

by a subroutine called SUBRTN:

. /

CALL SUBRTN /CALL 'SUBRTN'

3 /IN-LINE PARAMETER

. /

SUBRTN CALL PARAM /'SUBRTN' CALLS PARAM TO GET

/IN-LINE PARAMETER

LAC CONTEN /CONTEN CONTAINS IN-LINE PARAMETER

19

28

4.1.3 STEPUP

4.1.3.1 FUNCTION

STEPUP enables the user to modify or

'STEPUP' a subroutine return address up to five

locations.

4.1.3.2 CALLING SEQUENCE

4.1.3.2.1 PARAMETERS

AC = Number of locations

to STEPUP return

4.1.3.2.2 CALL

Call STEPUP

4.1.3.2.3 NORMAL PaiTURN

STEPUP returns to the

location following the call.

4.1.3.2.4 ERROR RETURN

Type 1 SYSERR code:

172 -- STEPUP value outside

range 1 -

4.1.3.3 EXAMPLE

To return three locations beyond the

normal :return for a subroutine, code:

1. LAC (3)

2. CALL STEPUP

Z. RETURN

20

29

4.2

MEMORY ALLOCATION ROUTINES

30

4.2 MEMORY ALLOCATION ROUTINES

4.2.1 LOGON

4.2.1.1 FUNCTION

LOGON is responsible for program

initialization and does the following:

a. Acquires COMMON space.

b. Sets a transfer vector for

Teletype or Dataphone.

c. Zeros MEMAL base pointers.

d. Initializes PUSHJ-POPJ.

e. Initializes key variables for DISK

and DO routines.

4.2.1.2 CALLING SEQUENCE

4.2.1.2.1 PARAMETERS

A cell labeled COMMON must

contain the number of user COMMON cells

desired. (The user's COMMON should

start at FIELD + 470).

4.2.1.2.2 CALL

LOGON or LOGONT (for Teletype)

LOGOND (for Dataphone)

4.2.1.2.3 NORMAL RETURN

LOGON returns to the

location immediately following COPMON

cell (COMMON + 1).

4.2.1.2.4 ERROR RETURNS

None

4.2.1.3 EXAMPLE

To LOGON using Dataphone and obtaining

six COMMON locations:

LOGOND

COMMON ENDCOM - BEGCOM + 1 /6 CELLS COMMON

.LOC FLD + 470

21

31

BEGCOM 0

PTR1 0

CTR1 0

TEMPI 0

SAVE1 0

ENDCOM 0

32

.LOC COMMON + 1

22

/FIRST COMMON CELL

/LAST COMMON CELL

/RETURNS

4.2.2 DEFINE

4.2.2.1 FUNCTION

DEFINE enables the user to obtain

MEMAL space.

4.2.2.2 CALLING SEQUENCE

4.2.2.2.1 PARAMETERS

One or more in-line

parameters must follow the call on

DEFINE. These parameters terminate

with a FINISH statement. Each in-line

parameter consists of a name tag

(col. 1) and the block length in octal

(col. 8). In-line parameters

specifying block names and their

lengths plus the FINISH parameter are

required. Any reasonable number of

blocks may be reque!ted, provided the

total number of available MEMAL cells

are not exceeded.

4.2.2.2.2 CALL

CALL DEFINE

NAME1 N (N = Length of block in

octal)

NAME2 N

NAME3 N

NAMEX N

FINISH

23

33,

4.2.2.2.3 NORMAL RETURN

DEFINE returns to the

location following the FINISH statement.

The "N" values indicated in the

parameters above are changed by DEFINE

to offset values, which give the actual

address when added to the MEMAL base

address. The FIND routine calculates

addresses of named MEMAL buffers.

4.2.2.2.4 ERROR RETURN

Type 0 SYSERR codes:

101 -- MEMAL request size

zero

177 -- MEMAL space exhausted.

4.2.2.3 EXAMPLE

To obtain a 300
8
cell MEMAL area

consisting of three named buffers of 1008 cells

each:

CALL DEFINE /CALL DEFINE ROUTINE

BUFF1 100 /BUFFER 1, 100 CELLS

BUFF2 100 /BUFFER 2, 100 CELLS

BUFF3 100 /BUFFER 3, 100 CELLS

FINISH /END OF PARAMETERS

/RETURNS HERE

24

34

4.2.3 FIND

4.2.3.1 FUNCTION

FIND locates a named cell in MEMAL

and returns its address and content to the

caller.

4.2.3.2 CALLING SEQUENCE

4.2.3.2.1 PARAMETERS

The name of the desired

cell is passed as an in-line parameter.

4.2.3.2.2 CALL

CALL FIND

NAME /NAME OF A CELL

DEFINED IN MEMAL

4.2.3.2.3 NORMAL RETURN

FIND returns to the location

following the call with these parameters:

ADRESS = Address of the named cell

in MEMAL

CONTEN = Contents of the named cell

in MEMAL

4.2.3.2.4 ERROR RETURN

None

4.2.3.3 EXAMPLE

To obtain the contents of a MEMAL cell

named VARBL:

CALL FIND /CALL FIND ROUTINE

VARBL /MEMAL CELL NAME

LAC CONTEN /CONTINUE

25

4.2.4 STORE

4.2.4.1 FUNCTION

STORE enables the user to deposit a

value in a named MEMAL cell. STORE is used only

on MEMAL obtained through the DEFINE routine.

4.2.4.2 CALLING SEQUENCE

4.2.4.2.1 PARAMETERS

SOURCE = Value to be stored

In-line parameter following

the call naming tha cell within MEMAL.

4.2.4.2.2 CALL

CALL STORE

NAME

4.2.4.2.3 NORMAL RETURN

STORE returns to the

location following the MEMAL name

parameter.

4.2.4.2.4 ERROR RETURN

Not applicable.

4.2.4.3 EXAMPLE

To store an asterisk (ASCII 252) in a

MEMAL cell called 'ENDBUF':

LAC (.AST) /LOAD AN ASTERISK

DAC SOURCE /STORE IN SOURCE

CALL STORE /GO TO STORE ROUTINE

ENDBUF /DEFINED CELL NAME

/RETURNS HERE

26

36

4.:

INPUT/OUTPUT ROUTINES

37

4.3 INPUT/OUTPUT ROUTINES

4.3.1 OBTAIN

4.3.1.1 FUNCTION

OBTAIN is used to GRAB I/O devices.

No more than 12 device types with seven units

per type can be GRABbed in a single call on

OBTAIN.

4.3 1.2 CALLING SEQUENCE

4.3.1.2.1 PARAMETERS

Two 6-digit in-line

parameters are used to indicate the

device types and the number of units

per type tc be GRABbed. These

parameter words are broken down as

follows:

Digit Device

Word 1 1 Screen

2 Keyboard

3 Touch

4 RA 950 Projector

5 Teletype/Dataphone

6 Crow

Word 2 1 Punch

2 Line Printer

3 To be assigned

4 To be assigned

5 To be assigned

6 To be assigned

4.3.1.2.2 CALL

CALL OBTAIN (IMPORTANT:

Both parameter words must be present,

even if they are zero.)

27

Parameter 1

Parameter 2

4.3.1.2.3 NORMAL RETURN

OBTAIN returns to the

location following the second

parameter in the call.

4.3.1.2.4 ERROR RETURN

Type 1 SYSERR codes:

100 -- GRAB error - Screen

101 -- GRAB error - Keyboard

102 -- GRAB error - Touch

103 -- GRAB error - Projector

104 -- GRAB error - Teletype/Dataphone

105 -- GRAB error - Crow

106 -- GRAB error - Punch

107 -- GRAB error - Printer

110 -- To be assigned

111 -- To be assigned

112 -- To be assigned

113 -- To be assigned

4.3.1.3 EXAMPLE

To grab 1 touch-sensitive, 2 projectors,

1 teletype, and 1 crow:

CALL OBTAIN /CALL OBTAIN ROUTINE FOR

001211 /1 TOUCH, 2 PROJECTORS

1 TELETYPE

000000 /AND 1 CROW

/RETURNS HERE

28

3a

4.3.2 RELESE

4.3.2.1 FUNCTION

RELESE returns to the Executive systems

those I/O devices which have been "GRABbed" by

the job (see OBTAIN for device GRABs). Up to 12

device types and seven units of each type may be

released.

4.3.2.2 CALLING SEQUENCE

4.3.2.2.1 PARAMETERS

As in the OBTAIN routine,

two 6-digit octal in-line parameter

words indicate which devices are to be

released. The parameter word structure

is as follows:

Digit Associated Device

Word 1 1 -CRT Screen

2 Keyboard

3 Touch Sensitive

4 Projector

5 Teletype/Dataphone

6 Crow

Word 2 1 Paper Tape Punch

2 Line Printer

3 Presently unassigned

4 Presently unassigned

5 Presently unassigned

6 Presently unassigned

4.3.2.2.2 CALL

CALL RELESE

WORD 1

WORD 2

(IMPORTANT: Both parameter words must

be present, even if they are zero.)

29

40:

4.3.2.2.3 NORMAL RETURN

RELESE returns to the

location following parameter Word 2.

4.3.2.2.4 ERROR RETURN

Type 1 SYSTERR codes:

114 -- Release Error - Screen

115 -- Release Error - Keyboard

116 -- Release Error - Touch

117 -- Release Error - Projector

120 -- Release Error - TTY/DATAPHONE

121 -- Release Error - Crow

122 -- Release Error - Punch

123 -- Release Error - Printer

124 -- To be assigned

125 -- To be assigned

126 -- To be assigned

127 -- To be assigned

4.3.2.3 EXAMPLE

To release 1 Touch, 2 Projectors,

1 Teletype, 1 Crow, and 1 Paper Tape Punch:

CALL RELESE /GO TO RELEASE ROUTINE

001211 /PARAMETER WORD 1

100000 /PARAMETER WORD 2

/RETURNS HERE

30

41

4.3.3 SETUP

4.3.3.1 FUNCTION

SETUP creates parameter lists for all

the devices that can be GRABbed by the OBTAIN

routine. The parameter lists are set up in the

most commonly used format. However, the user

can alter the parameter lists if necessary (see

EXCEPT routine documentation).

4.3.3.2 CALLING SEQUENCE

4.3.3.2.1 PARAMETERS

FINISH

NOTE: Detailed information

concerning parameter lists can be found

in the documentation of peripheral

equipment routines.

4.3.3.2.2 CALL

CALL SETUP

FINISH

4.3.3.2.3 NORMAL RETURN

SETUP returns to the

location following the parameter

FINISH.

4.3.3.2.4 ERROR RETURN

Type 1 SYSERR code:

171 -- no "FINISH"

parameter

4.3.3.3 EXAMPLE

To create standard parameter lists:

CALL SETUP /ESTABLISH PARAMETER LISTS

FINISH /WITH NO CHANGES

/RETURNS HERE

31

12

4.3.4 EXCEPT

4.3.4.1 FUNCTION

EXCEPT modifies the parameter lists

created by the SETUP routine.

4.3.4.2 CALLING SEQUENCE

4.3.4.2.1 PARAMETERS

Three parameters are

required for each change.

Parameter 1 -- Device number *

Parameter 2 -- Parameter list word

number to be replaced

Parameter 3 -- The parameter word to

be inserted

*Device numbers are the same as those

shown in the CENTRAL EXECUTIVE

documentation.

NOTE: Detailed information concerning

parameter lists can be found in the

documentation of peripheral equipment

routines.

4.3.4.2.2 CALL

The call on EXCEPT must

appear between the call on SETUP and

its parameter FINISH (see Example).

CALL SETUP

EXCEPT

A

B

C

FINISH

32

43

4.3.4.2.3 NORMAL RETURN

EXCEPT returns to the

location following the word FINISH.

4.3.4.2.4 ERROR RETURN

Type 1 SYSERR code:

165 -- Unknown device

number

171 -- No FINISH parameter

4.3.4.3 EXAMPLE

To set up parameter lists and alter

the teletype list to enable the unit to be

treated as a half-duplex unit:

CALL SETUP /FIRST, CREATE PARAMETER LISTS

EXCEPT /CHANGE FOLLOWS

23 /TELETYPE DEVICE NUMBER

1 /FIRST WORD IN PARAMETER LIST

200001 /NEW PARAMETER

FINISH /ALL PARAMETER WORD DONE

/CONTINUE

33

4.3.5 DISPLA

4.3.5.1 FUNCTION

DISPLA enablels the user to project a

text string on the CRT bCREEN.

4.3.5.2 CALLING SEQUEOCE

4.3.5.2.1 PARAMETERS

The message address and the

character size must be specified. The

first word of the text must contain the

length (number of characters in octal),

followed by the message text in packed

ASCII, two characters per word.

SOURCE = text address

An in-line parameter

following the call must indicate the

character size to be displayed. (see

"SCREEN CHARACTER SIZE CHART, APPENDIX

E, for details)

4.3.5.2.2 CALL

SOURCE = TEXT ADDRESS

CALL DISPLA

CHARACTER SIZE

4.3.5.2.3 NORMAL RETURN

DISPLA returns to the

location following the character size

parameter. NOTE: The first cell of

the text string (length cell) is

altered prior to return.

4.3.5.2.4 ERROR RETURN

Type 1 SYSERR code:

130 -- request error -

SCREEN

34

4'i

4.3.5.3 EXAMPLE

To display a message labeled MSG1 on

the SCREEN using character size 4:

LAC (MSG1) /LOAD ADDRESS OF MSG1

DAC SOURCE /STORE IN SOURCE

CALL DISPLA /GO TO DISPLA ROUTINE

4 /CHARACTER SIZE 4

/RETURNS HERE

MSG1 14 /MSG LENGTH (OCTAL)

323303 IS - C

322305 /R - E

305316 /E - N

240324 / - T

305323 /E - S

324256 /T - .

35

4.3.6 SHOLET

4.3.6.1 FUNCTION

SHOLET displays a single character on

the screen.

4.3.6.2 CALLING SEQUENCE

4.3.6.2.1 PARAMETERS

SOURCE m Character to be

displayed.

Character size (see SCREEN CHARACTER

SIZE CHART)

4.3.6.2.2 CALL

CALL SHOLET

CHARACTER SIZE

4.3.6.2.3 NORMAL RETURN

SHOLET returns to next

location following the rail.

4.3.6.2.4 ERROR RETON

Type 1 SYSERR code:

130 -- Screen request error

4.3.6.3 EXAMPLE

To display the letter "B" on the screen:

LAC (302) /LOAD THE ASCII CODE FOR "B"

DAC SOURCE /PUT IT IN SOURCE

CALL SHOLET /CALL SHOLET ROUTINE

4 /SCREEN SIZE 4

/CONTINUE

36

4 7

4.3.7 ERASE

4.3.7.1 FUNCTION

ERASE enables the user to erase the

CRT SCREEN.

4.3.7.2 CALLING SEQUENCE

4.3.7.2.1 PARAMETER

None

4.3.7.2.2 CALL

CALL ERASE

4.3.7.2.3 NORMAL RETURN

ERASE returns to the

location following the call.

4.3.7.2.4 ERROR RETURN

Type 1 SYSERR code:

130 -- request error -

SCREEN

4.3.7.3 EXAMPLE

To erase a CRT SCREEN:

CALL ERASE /GO TO ERASE SCREEN

/RETURNS HRRE

37

4 8f

4.3.8 SKIP

4.3.8.1 FUNCTION

SKIP enables the user to skip down a

specified number of lines on the CRT SCREEN.

4.3.8.2 CALLING SEQUENCE

4.3.8.2.1 PARAMETERS

VARBL = number of lines to

skip (octal). An in-line parameter

specifies the address of the user's

VARBL.

4.3.8.2.2 CALL

CALL SKIP

VARBL

4.3.8.2.3 NORMAL RETURN

SKIP returns to the

location following the in-line

VARBL parameter.

4.3.8.2.4 ERROR RETURN

Type 1 SYSERR code:

130 -- request error -

SCREEN

4.3.8.3 EXAMPLE

To skip down six lines from the

current position:

LAC (6) /LOAD LINE COUNT (6)

DAC VARBL /STORE IN USER VARIABLE

CALL SKIP /GO TO SKIP ROUTINE

VARBL /PTR TO REPETITION CELL

/RETURNS HERE

38

49-

4.3.9 BACKUP

4.3.9.1 FUNCTION

BACKUP returns the cursor to the

left-most side of the screen.

4.3.9.2 CALLING SEQUENCE

4.3.9.2.1 PARAMETERS

None

4.3.9.2.2 CALL

CALL BACKUP

4.3.9.2.3 NORMAL RETURN

BACKUP returns to the

location following the call.

4.3.9.2.4 ERROR RETURN

'Type 1 SYSERR code:

130 -- Screen request error

4.3.9.3 EXAMPLE

To return the cursor to the left-most

side of the screen:

CALL BACKUP /CALL BACKUP ROUTINE

/RETURNS HERE

39

4.3.10 SPACE

4.3.10.1 FUNCTION

SPACE gives the user the facility to

display one or more spaces on the screen in a

single call.

4.3.10.2 CALLING SEQUENCE

4.3.10.2.1 PARAMETERS

Desired number of spaces in

some user-specified cell.

4.3.10.2.2 CALL

CALL SPACE

VARBL -- Address of cell

contaiiing number of spaces.

4.3.10.2.3 NORMAL RETURN

SPACE returns to the

location following the call.

4.3.10.2.4 ERROR RETURN

Type 1 SYSERR code:

130 -- Screen request error

4.3.10.3 EXAMPLE

To display four spaces on the screen:

LAC (4) /LOAD A 4

DAC VARBL /PUT IT IN USER'S CELL

CALL SPACE /CALL SPACE ROUTINE

VARBL /ADDRESS OF NUMBER OF SPACES

/RETURNS HERE

40

4.3.11 REAKDY

4.3.11.1 FUNCTION

READKY monitors a keyboard for a

subject's response. The monitoring time limit

is defined by the user.

4.3.11.2 CALLING SEQUENCE

4.3.11.2.1 PARAMETERS

Monitoring time-limit in

seconds in a user-specified cell.

4.3.11.2.2 CALL

CALL READKY

VARBL -- Address of time

limit cell.

4.3.11.2.3 NORMAL RETURN

READKY returns to the

location following the call. The

following parameter is returned:

ANSWER = ZERO -- NO RESPONSE

400000 -- PARITY ERROR

OTHER -- ASCII RESPONSE

4.3.11.2.4 ERROR RETURN

Type 1 SYSERR code:

131 -- Keyboard request

error

4.3.11.3 EXAMPLE

To monitor the keyboard for 5 seconds:

LAC (5) /LOAD TIME LIMIT

DAC VARBL /STORE IN TIME LIMIT CELL

CAL/. READKY /CALL READKY ROUTINE

VARBL /ADDRESS OF TIME LIMIT CELL

LAC ANSWER /RETURNS HERE

41

4.3.12 TUCH

4.3.12.1 FUNCTION

TUCH monitors the touch-sensitive

surface for a subject's response. The user

defines the monitoring time-limit.

4.3.12.2 CALLING SEQUENCE

4.3.12.2.1 PARAMETERS

VARBL = number of seconds

delay

4.3.12.2.2 CALL

CALL TUCH

VARBL

4.3.12.2.3 NORMAL RETURN

TUCH returns to the

location after the call with following

parameter:

ANSWER = ZERO -- NO RESPONSE

400000 -- PARITY ERROR

OTHER -- WINDOW NUMBER OF

TOUCH (1-1208)

4.3.12.2.4 ERROR RETURN

Type 1 SYSERR code:

132 -- Executive System

request error

4.3.12.3 EXAMPLE

To monitor the touch-sensitive surfdce

for five seconds:

LAC (5) /LOAD 5 SECONDS

DAC DELAY /STORE IN DELAY CELL

CALL TUCH /CALL TOUCH ROUTINE

DELAY /ADDRESS OF TIME DELAY

LAC ANSWER /LOAD RESULTS AND CONTINUE

42

4.3.13 LOCATE

4.3.13.1 FUNCTION

LOCATE is used to position a slide on

a RA-950 projector.

4..3.13.2 CALLING SEQUENCE

4.3.13.2.1 PARAMETERS

SLIDE = Desired slide

number (1-1208)

Projector number = PROJ1

or PROJ2

4.3.13.2.2 CALL

CALL LOCATE

PROJ1 or PROJ2 /LOGICAL

UNIT #

4.3.12.2.3 NORMAL RETURN

LOCATE returns to the

location following the call.

4.3.13.2.4 ERROR RETURN

Type 1 SYSERR code:

142 -- Projector 1 request

error

143 -- Projector 2 request

error

4.3.13.3 EXAMPLE

To position slide 4 on Projector 1:

LAC (4) /LOAD SLIDE NUMBER

DAC SLIDE /STORE IT IN THE IMP CELL

CALL LOCATE /CALL THE LOCATE ROUTINE

PROJ1 /FOR PROJECTOR 1

/RETURNS HERE

43

54

4.3.14 LITON

4.3.14.1 FUNCTION

LITON turns on the slide projector

light.

4.3.14.2 CALLING SEQUENCE

4.3.14.2.1 PARAMETERS

Projector number -- PROJ1

or PROJ2

4.3.14.2.2 CALL

CALL LITON

PROJ1 /LOGICAL UNIT #

4.3.14.2.3 NORMAL RETURN

LITON returns to the

location following the call.

4.3.14.2.4 ERROR RETURN

Type 1 SYSERR code:

142 -- Projector 1 request

error

143 -- Projector 2 request

error

4.3.14.3 EXAMPLE

To turn on the light in projector 2:'

CALL LITON /CALL LITON ROUTINE

PROJ2 /FOR PROJECTOR 2

/RETURNS HERE

44

4.3.15 L1TOFF

4.3.15.1 FUNCTION

LITOFF enables the user to turn off a

specified projector light.

4.3.15.2 CALLING SEQUENCE

4.3.15.2.1 PARAMETERS

The projector number is

specified by an in-line parameter.

The IMP defined symbols PROJ1 or

PROJ2 may be used.

4.3.15.2.2 CALL

CALL LITOFF

PROJ1 -- Projector Number

4.3.15.2.3 NORMAL RETURN

LITOFF returns to the

location following the projector

number parameter.

4.3.15.2.4 ERROR RETURN

Type 1 SYSERR codes:

142 -- Request error -

Projector 1

143 -- Request error -

Projector 2

4.3.15.3 EXAMPLE

To turn the light off on projector 1:

CALL L-IOFF /GO TO LITOFF ROUTINE

PROJI /REFERENCE PROJECTOR 1

/RETURNS HERE

45

56'

4.3.16 TYPE

4.3.16.1 FUNCTION

TYPE prints a multi-character

message on a teletype or dataphone teletype.

4.3.16.2 CALLING SEQUENCE

4.3.16.2.1 PARAMETERS

The first word of the

message to be typed must contain the

message length (number of characters

in octal). The message text should

be in packed ASCII, SOURCE =

message address.

An in-line parameter

following the call must indicate

the unit being referenced.

4.3.16.2.2 CALL

SOURCE = Message Address

CALL TYPE

TTY1 -- Logical Unix #

4.3.16.2.3 NORMAL RETURN

TYPE returns to the

location following the teletype

number parameter.

4.3.16.2.4 ERROR RETURN

Type 1 SYSERR codes:

146 -- Request Error -

TELETYPE 1

147 -- Request Error -

TELETYPE 2

150 -- Request Error -

TELI.:TYPE 3

46

57-

4.3.16.3 EXAMPLE

To type a message called MSG1 on

teletype 1:

LAC (MSG1) /LOAD ADDRESS OF MSG1

DAC SOURCE /STORE IN SOURCE

CALL TYPE /GO TO TYPE ROUTINE

TTY1 /TYPE MSG ON TTY1

/RETURNS HERE

MSG1 12 /MSG LENGTH (OCTAL)

324331 /7 - Y

320305 /P - E

240324 / - T

305323 /E - S

324256 /T - .

47

58'

4.3.17 TYPKEY

4.3.17.1 FUNCTION

TYPKEY types a single character on

the teletype.

4.3.17.2 CALLING SEQUENCE

4.3.17.2.1 PARAMETERS

SOURCE = Character to be

typed

Teletype number -- TTY1,

TTY2, or TTY3

4.3.17.2.2 CALL

CALL TYPKEY

TTY 1 /LOGICAL UNIT #

4.3.17.2.3 NORMAL RETURN

TYPKEY returns to the

location following the call.

4.3.17.2.4 ERROR RETURN

Type 1 SYSERR codes:

146 -- Teletype 1 request

error

147 -- Teletype 2 request

error

150 -- Teletype 3 request

error

4.3.17.3 EXAMPLE

To type the letter "A" on Teletype

number 2:

LAC (301) /LOAD AN ASCII "A"

DAC SOURCE /PUT IT IN SOURCE

CALL TYPKEY /CALL TYPKEY ROUTINE

TTY2 /FOR TTY2

/RETURNS HERE

48

5 :1

4.3.18 SPACEB

4.3.18.1 FUNCTION

SPACEB enables the user to print one

ar more blank spaces on the teletype with a

single call.

4.3.18.2 CALLING SEQUENCE

4.3.18.2.1 PARAMETERS

The number of spaces to be

printed. Teletype number -- TTY1,

TTY2, or TTY3

4.3.18.2.2 CALL

CALL SPACER

TTY1 /LOGICAL UNIT #

VARBL -- Address of cell

contair:ng number of

spaces

4.3.18.2.3 NORMAL RETURN

SPACEB returns to the

location following the call.

4.3.18.2.4 ERROR RETURN

Type 1 SYSERR codes:

146 -- Teletype 1 request

error

147 -- Teletype 2 request

error

150 -- Teletype 3 request

error

4.3.18.3 EXAMPLE

To generate six spaces on Teletype 1:

LAC (6) /LOAD NUMBER OF SPACES DESIRED

DAC VARBL /STORE IT IN USER-DEFINED CELL

CALL SPACEB /CALL SPACEBAR ROUTINE

49

60

TTY1 /TELETYPE NUMBER

VARBL /ADDRESS OF CELL CONTAINING

NUMBER OF REPETITIONS

/RETURNS HERE

50

61

4.3.19 FEED

4.3.19.1 FUNCTION

FEED prints one or more linefeeds

on a user specified teletype or dataphone

teletype.

4.3,19.2 CALLING SEQUENCE

4.3.19.2.1 PARAMETERS

A user variable must

contain the number of linefeeds

desired. The teletype unit number

must be specified.

VARBL = number of

repetitions (octal). The teletype

unit number 1, 2, 3. (IMP defined

TTY1, TTY2, or TTY3 may be used.)

4.3.19.2.2 CALL

CALL FEED

TUN /LOGICAL UNIT #

VARBL -- Address of cell

containing linefeeds

4.3.19.2.3 NORMAL RETURN

FEED returns to the

location following the teletype

number parameter.

4.3.19.2.4 ERROR RETURN

Type 1 SYSERR codes:

146 -- Request error -

TELETYPE 1

147 -- Request error -

TELETYPE 2

150 -- Request error -

TELETYPE 3

51

62

4.3.19.3 EXAMPLE

To output six linefeeds on Teletype 2:

LAC (6) /LOAD REPETITION COUNT

DAC VARBL /STORE IN USER VARIABLE

CALL FEED /GO TO FEED ROUTINE

TTY2 /TELETYPE NUMBER

VARBL /CELL CONTAINING REPETITION

/COUNT

/RETURNS HERE

52

6 3

4.3.20 GETKEY

L.3.20.1 FUNCTION

GETKEY monitors a teletype for a user

specified time period.

4.3.20.2 CALLING SEQUENCE

4.3.20.2.1 PARAMETERS

VARBL = Time delay in full

seconds (octal)

The teletype unit number

1, 2, or 3 must be specified. (IMP

defined TTY1, TTY2, or TTY3 may be

used.)

4.3.20.2.2 CALL

CALL GETKEY

TTY1 /LOGICAL UNIT #

VARBL -- Address of cell

containing time delay

4.3.20.2.3 NORMAL RETURN

GETKEY returns with the

parameter answer to the location

following the VARBL parameter.

ANSWER = Zero indicates no response

was made.

4.3.20.2.4 ERROR RETURN

Type 1 SYSERR codes:

146 -- Request error -

TELETYPE 1

147 -- Request error -

TELETYPE 2

150 -- Request error -

TELETYPE 3

53

4.3.20.3 EXAMPLE

To activate Teletype 1 wait 10 seconds

for a response:

LAC (12) /LOAD 10 SECONDS TIME DELAY

DAC VARBL /STORE IN USER VARIABLE

CALL GETKEY /GO TO GETKEY ROUTINE

TTY1 /MONITOR TTY1

VARBL /CELL CONTAINING TIME DELAY

LAC ANSWER /LOAD RESPONSE AND CONTINUE

54

4.3.21 MUMBLE

4.3.21.1 FUNCTION

MUMBLE plays a specified message or

messages on a CROW random-access audio unit.

4.3.21.2. CALLING SEQUENCE

4.3.21.2.1 PARAMETERS

SOURCE - Message stack

address

NOTE: The message stack must contain

no more than five message parameters.

The stack must be terminated with an

asterisk. (See system documentation

.3.CROW for detailed information on

message parameters.)

4.3.21.2.2 CALL

SOURCE = Message stack

address

CALL MUMBLE

4.3.21.2.3 NORMAL RETURN

MUMBLE returns to the

location following the call.

4.3.21.2.4 ERROR RETURN

Type 1 SYSERR codes:

133 -- 3PIEAK request

error

156 -- Attempt to stack

more than five

message parameters

55

66

4.3.21.3 EXAMPLE

To play the audio message labeled

CROMES:

LAC (CROMES)

DAC SOURCE

CALL MUMBLE

56

67

/LOAD MESSAGE STACK ADDRESS

/STORE IT IN SOURCE

/CALL MUMBLE

/RETURNS HERS

4.3.22 PUNCHO

4.3.22.1 FUNCTION

PUNCH° punches a user-specified buffer

on paper tape. Unless otherwise, specified, the

buffer is punched in alphanumeric mode (ASCII).

4.3.22.2 CALLING SEQUENCE

4.3.22.2.1 PARAMETERS

SOURCE = Buffer address

4.3.22.2.2 CALL

CALL PUNCH°

4.3.22.2.3 NORMAL RETURN

PUNCHO returns to the

location following the call.

4.3.22.2.4 ERROR RETURN

Type 1 SYSERR code:

134 -- Punch request error

4.3.22.3 EXAMPLE

To punch a buffer labeled "PBUFF":

LAC (PBUFF) /LOAD THE BUFFER ADDRESS

DAC SOURCE /STORE IT IN SOURCE

CALL PUNCHO /CALL PUNCHOUT ROUTINE

/CONTINUE

57

6L'

4.3.23 PRINT

4.3.23.1 FUNCTION

PRINT is used to print a buffer on the

line printer. A maximum of 120 characters may

be printed per line.

4.3.23.2 CALLING SEQUENCE

4.3.23.2.1 PARAMETERS

SOURCE = Buffer address

One of the following forms-

control parameters must be included in

each call on PRINT: TOF - Top-of-form

SINGLE -- Single space after printing

DOUBLE -- Double space after printing

TRIPLE -- Triple space after printing

4.3.2.3.2.2 CALL

CALL PRINT

FORMS CONTROL PARAMETER

4.3.23.2.3 NORMAL RETURN

PRINT returns to the

location following the call.

4.3.23.2.4 ERROR RETURN

Type 1 SYSERR code:

135 -- Printer request

error

58

69

4.3.23.3 EXAMPLE

To print a buffer labeled "PRTBUF",

specifying triple spacing:

LAC (PRTBUF) /LOAD BUFFER ADDRESS

DAC SOURCE /PUT IT IN SOURCE

CALL PRINT /CALL PRINT ROUTINE

TRIPLE /TRIPLE SPACING

/CONTINUE

59

4.3.24 DISK

4.3.24.1 FUNCTION

DISK enables the user to interact with

the system Disk File Management System (DISKUS).

The user should become familiar with DISKUS before

attempting to use the IMP DISK routine.

4.3.24.2 CALLING SEQUENCE

4.3.24.2.1 PARAMETERS

Certain operations require

that the AC be initialized prior to the

call. This is true in the CREATE, BACK,

FORWARD, READ, WRITE and WREOF functions.

AC = (CREATE) desired record length

(octal)

(BACK) number of records to

backspace (octal)

(FORWRD) number of records to

skip forward (octal)

(READ) address into which data is

to be read

(WRITE) Address from which data is

to be written

(WREOF) address from which data is

to be written

In all other operations, the contents

of the AC are ignored.

In-line parameters (all

operations): Immediately following the

call, the operation to be executed must

be specified. The following IMP defined

equivalences may be used:

60

71

CREATE (1) -- Create new file

OPEN (2) -- Open old file

CLOSE (3) -- Close file

DELETE (4) -- Close and delete

file

BACK (5) -- Backspace record(s)

FORWRD (6) -- Skip forward

record(s)

READ (7) -- Read one record

WRITE (10) -- Write one record

NOF (11) -- Skip to end-of-

file

REWIND (12) -- Skip to beginning-

of-file

WREOF (13) -- Write one record

at end-of-file

The next in-line parameter

must specify an address where the file

name in packed ASCII is to be found:

NOTE: The file name area (three cells)

must contain a predetermined "name"

formatted in packed ASCII (two

characters per word, six characters

total).

4.3.24.2.2 CALL

CALL DISK

OPERATION

VARBL

4.3.24.2.3 NORMAL RETURN

DISK returns to the

location following the user's "VARBL"

parameter. The AC will contain:

AC = 400000 or 400000 + --

Successful operation

61

OTHER m Any other AC code is indicative

of an unsuccessful operation. See below.

4.3.24.2.4 ERROR RETURN

Type 1 SYSERR codes:

136 -- Invalid DISK command

137 -- Link set, SYSTEM out

of MEDAL

140 -- Attempt to open

fourth file

AC codes returned to user:

1 -- DISK out of file space

2 -- Attempt to create a

file that already exists

3 -- Attempt to open a non-

existent file

4 -- Attempt to open an open

file

5 -- Attempt to operate on

a file that is not open

6 -- Attempt to backspace

beyond beginning-of-

file

7 -- Attempt to operate

beyond end-of-file

10 -- Parity/timing error on

read or write

11 -- Maximum file size

exceeded

12 -- Open file list full

13 -- Maximum number of files

in system

62

73

4.3.24.3 EXAMPLE

To read one record from a currently

"OPEN" disk file into an area called "INBUF":

(IMPORTANT: It is assumed that a three cell

area. called "NAME" was initialized to a packed

ASCU file name.)

LAC (NAME) /LOAD ADDRESS OF FILE NAME AREA

DAC VARBL /STORE IN USER'S VARIABLE

LAC (INBUF) /LOAD ADDRESS OF USER'S BUFFER

CALL DISK /GO TO DISK ROUTINE

READ /OPERATION

VARBL /POINTER TO CELL CONTAINING

/ADDRESS OF FILE

/NAME AREA

/SUCCESSFUL (400000)?

/NO, GO EVALUATE ERROR

/YES, CONTINUE

SMA

JMP HELP

HELP SAD (10)

JMP ERROR1

SAD (5)

JMP OPEN

63

/PARITY ERROR?

/YES, GO TO ERROR1

/FILE NOT OPEN?

/YES, GO TO OPEN FILE

/ETC.

4.3.25 LOGOFF

4.3.25.1 FUNCTION

LOGOFF terminates a job and does the

following:

1. Releases MEMAL (if any) obtained by SETUP

and/or DEFINE

2. Types a message on control teletype:

"JOBNR - JN - HAS TERMINATED SUCCESSFULLY!"

3. Suspends the job (DEAD, 200000) for operator

Intervention.

4.3.25.2 CALLING SEQUENCE

4.3.25.2.1 PARAMETERS

None

4.3.25.2.2 CALL

LOGOFF

4.3.25.2.3 NORMAL RETURN

LOGOFF does not return.

4.3.25.2.4 ERROR RETURN

None

4.3.25.3 EXAMPLE

To release MEMAL, type CTTY message and

suspend the job:

LOGOFF /GO TO LOGOFF ROUTINE

64

7d

4 . 4

MISCELLANEOUS FUNCTION ROUTINES

7 6

4.4 MISCELLANEOUS FUNCTION ROUTINES

4.4.1 BINDEC

4.4.1.1 FUNCTION

BINDEC converts up to 18 binary digits

to decimal ASCII characters. The ASCII characters

are deposited in a buffer, one per word, with a

user-specified bit configuration in the left-

most nine bits (i.e., 000, 240, 377, etc.).

The user may specify suppression of leading

zeroes.

4.4.1.2 CALLING SEQUENCE

4.4.1.2.1 PARAMETERS

SOURCE = Number to be

converted

RECEVE = Buffer address

(+ 400000 if

zero suppression

is desired).

Number of digits to convert.

Desired value in left-most nine bits.

4.4.1.2.2 CALL

CALL BINDEC

DESIRED HIGH ORDER VALUE

NUMBER OF OCTAL DIGITS TO CONVERT (1-6)

4.4.1.2.3 NORMAL RETURN

BINDEC returns to the

location following the call with the

ASCII characters in the user's buffer.

4.4.1.2.4 ERROR RETURN

None

65

77

4.4.1.3 EXAMPLE

To convert an 18-BIT binary number

to decimal ASCII characters with an ASCII rutout

in the high order of each word:

LAC VARBL /LOAD SOME NUMBER TO BE

CONVERTED

DAC SOURCE /STORE IN SOURCE

LAC BUFFER /LOAD BUFFER ADDRESS

DAC RECEVE /STORE IN RECEVE

CALL BINDEC /CALL BINDEC ROUTINE

377006 /HIGH ORDER = RUBOUT -- SIX

OCTAL, DIGITS

/CONTINUE

66

4.4.2 CHECK1

4.4.2.1 FUNCTION

CHECK1 compares the contonts of

ANSWER with a specified list of data.

4.4.2.2 CALLING SEQUENCE

4.4.2.2.1 PARAMETERS

SOURCE = address of list

to be searched

ANSWER = Value to seek

4.4.2.2.2 CALL

CALL CHECK1

4.4.2.2.3 NORMAL RETURN

CHECK1 returns to the

location following the ca :1 with the

following parameters:

REMAIN = 0, if a match for ANSWER is

found

REMAIN 0 0, if no match s found

4.4.2.2.4 ERROR RETURN;

None

4.4.2.3 EXAMPLE

To see if a given windolf ruaber from

a touch-sensitive screen is in a,list of valid

responses called "VALRES":

/GET A RESPONSE FROM THE TOUCH

SENSITIVE

LAC (VALRES) /LOAD ADDRESS OF VALID RESPONSE

LIST

DAC SOURCE /STORE IN SOURCE

CALL CHECK1 /CALL CHECK1 W, /RESPONSE IN

ANSWER

LAC REMAIN /EVALUATE FINDINGS

67

79

4.4.3 CLEAR

4.4.3.1 FUNCTION

CLEAR enables the user to zero a

specified portion of memory.

4.4.3.2 CALLING SEQUENCE

4.4.3.2.1 PARAMETERS

The area to be zeroed must

be terminated with an asterisk (ASCII

252).

SOURCE = Address of area to be cleared

4.4.3.2.2 CALL

CALL CLEAR

4.4.3.2.3 NORMAL RETURN

CLEAR returns to the

location following the call.

4.4.3.2.4 ERROR RETURN

None

4.4.3.3 EXAMPLE

To zero an area called "BUFFER":

LAC (.AST)

DAC ENDBUF

LAC (BUFFER)

DAC SOURCE

CALL CLEAR

BUFFER 0

0

ENDBUF 252

80

68

/LOAD AN ASTERISK

/STORE AT END OF BUFFER

/LOAD ADDRESS OF BUFFER

/STORE IN SOURCE

/GO TO CLEAR ROUTINE

/RETURNS HERE

/USER'S BUFFER

/TERMINATING ASTERISK

4.4.4 DECBIN

4.4.4.1 FUNCTION

DECBIN converts up to six ASCII digits

to an 18-bit binary number.

4.4.4.2 CALLING SEQUENCE

4.4.4.2.1 PARAMETERS

The ASCII buffer to be

converted may contain low order "LAMS"

(777777). These are ignored.

NOTE: The high order half of each

ASCII character to be converted will

have no effect on the result.

SOURCE = Beginning address of ASCII

buffer

The in-line parameter (1-

6) indica'..is the number of words to

be converted.

4.4.4.2.2 CALL

CALL DECBIN

6 (FIELD WIDTH)

4.4.4.2.3 NORMAL RETURN

DECBIN returns to the

location following the field width

with the parameter:

ANSWER = The binary result

4.4.4.2.4 ERROR RETURN

None

69

81

4.4.4.3 EXAMPLE

To convert a six word ASCII buffer to

its binary equivalent:

LAC (BUFFER) /LOAD ADDRESS OF BUFFER

DAC SOURCE /STORE IN SOURCE

CALL DECBIN /GO TO CONVERT IT

6 /FIELD WIDTH

LAC ANSWER /LOAD BINARY NUMBER

/CONTINUE

BUFFER 260 /ZERO

260 /ZERO

261 /ONE

270 /SEVEN

271 /NINE

263 /THREE

70

82

4.4.5 DIVIDE

4.4.5.1 FUNCTION

DIVIDE enables the user to divide one

signed integer by another.

4.4.5.2 CALLING SEQUENCE

4.4.5.2.1 PARAMETERS

SOURCE = Dividend

RECEVE = Divisor

4.4.5.2.2 CALL

CALL DIVIDE

4.4.5.2.3 NORMAL RETURN

DIVIDE returns to the

location following the call with the

following parameters:

ANSWER = glotient

REMAIN = Remainder

4.4 5.2.4 ERROR RETURN

Type 1 SYSERR code:

157 -- Attempt to divide

by zero

4.4.5.3 EXAMPLE

To divide 108 by 28:

LAC (10) /LOAD DIVIDEND

DAC SOURCE /STORE IN SOURCE

LAC (2) /LOAD DIVISOR

DAC RECEVE /STORE IN RECEVE

CALL DIVIDE /CALL DIVIDE ROUTINE

LAC ANSWER /EVALUATE RESULTS

71

8 3

4.4.6 DO

4.4.6.1 FUNCTION

DO executes a subroutine a variable

number of times. DOs may be nested three deep

but must be denested in the same order in which

they are nested. Branching out of a DO is

forbidden.

4.4.6.2 CALLING SEQUENCE

4.4.6.2.1 PARAMETERS

There are two in-line

parameters:

(a) The subroutine address

(b) Address of cell containing number

of repetitions.

NOTE: The routine to be executed must

be terminated by a "RETURN" statement.

4.4.6.2.2 CALL

CALL DO

SUBR /ADDRESS OF SUBROUTINE

VARBL /ADDRESS OF REPETITIONS CELL

4.4.6.2.3 NORMAL RETURN

DO returns to the location

following the call.

4.4.6.2.4 ERROR RETURN

Type 1 SYSERR codes:

167 -- Attempt to nest more

than three deep

170 -- Attempt to dentist out

of order

72

84,

4.4.6.3 EXAMPLE

To execute a subroutine called SUBR1

three times:

LAC (3) /LOAD NUMBER OF REPETITIONS

DESIRED

DAC VARBL /STORE IN CELL CALLED VARBL

CALL DO /CALL DO ROUTINE

SUBR1 /SUBROUTINE ADDRESS

VARBL /ADDRESS OF REPETITIONS CELL

/CONTINUE

73

85

4.4.7 ERROR

4.4.7.1 FUNCTION

ERROR serves as the IMP error handler.

ERROR makes a call on Executive System Routine

SYSERR, requesting a Type 1 SYSERR. IMP users

may use ERROR, providing they restrict their

error codes to the range 318 - 778.

4.4.7.2 CALLING SEQUENCE

4.4.7.2.1 PARAMETERS

AC = Error Code Number

4.4.7.2.2 CALL

JMP ERROR

4.4.7.2.3 NORMAL RETURN

ERROR does not return.

Job is suspended on "DEAD" (operator

intervention).

4.4.7.2.4 ERROR RETURN

Not applicable

4.4.7.3 EXAMPLE

LAW 31

JMP ERROR

74

/LOAD ERROR CODE

/GO TO ERROR ROUTINE

4.4.8 EXPO

4.4.8.1 FUNCTION

EXPO exponentiates any given value.

4.4.8.2 CALLING SEQUENCE

4.4.8.2.1 PARAMETERS

SOURCE = Value

RECEVE = Exponent

4.4.8.2.2 CALL

CALL EXPO

4.4.8.2.3 NORMAL RETURN

EXPO returns to the

location following the call with the

result in ANSWER.

4.4.8.2.4 ERROR RETURN

A set LINK upon return

indicates AC overflow.

4.4.8.3 EXAMPLE

To raise the value 10
8
to the 5th power:

LAC (10) /LOAD OCTAL VALUE

DAC SOURCE /STORE IN SOURCE

LAC (5) /LOAD OCTAL EXPONENT

DAC RECEVE /STORE IN RECEVE

CALL EXPO /CO TO EXPO ROUTINE

SZL /OVERFLOW?

JMP ERRORI /YES TO PROCESS ERROR

LAC ANSWER /LOAD RESULT

/CONTINUE

ERROR 1 LAW 30

JMP ERROR

75

/LOAD ERROR CODE

/GO TO ERROR ROUTINE

87

4.4.9 LOAF

4.4.9.1 FUNCTION

LOAF is a control routine which allows

the user to suspend a program for a specified

number of seconds.

4.4.9.2 CALLING SEQUENCE

4.4.9.2.1 PARAMETERS

In-line parameter following

the call must indicate the time delay

in seconds.

4.4.9.2.2 CALL

CALL LOAF

SECONDS (octal number)

4.4.9.2.3 NORMAL RETURN

LOAF returns to the location

following the time delay parameter upon

expiration of delay period.

4.4.9.2.4 ERROR RETURN

Type 0 SYSERR code:

104 -- Time delay was zero

or greater than

143470
8 (s.144 8>

143470
8

)

4.4.9.3 EXAMPLE

To suspend a program operation for 10

seconds:

CALL LOAF /GO TO LOAF

12 /NUMBER OF SECONDS (OCTAL)

/RETURNS HERE

76

88'

4.4.10 LOOKUP

4.4.10.1 FUNCTION

LOOKUP maintains a pointer to the current

CROW segment. On request, it will update the

segment pointer for each message played.

Optionally, LOOKUP will add the current CROW

segment to a user CROW message before updating

the segment pointer.

4.4.10.2 CALLING SEQUENCE

4.1.10.2.1 PARAMETERS

SOURCE 400000 + Track,

Length and Segment

to update the CROW

segment pointer

SOURCE = 000000 + Track,

Length to add the

current segment

and reset the

segment pointer

4.4.10.2.2 CALL

CALL LOOKUP

4 4.10.2.3 NORMAL RETURN

LOOKUP returns to the

1 cation following the call. ANSWER

w.11 contain the Crow belt segment

address.

4 4.10.2.4 ERROR RETURN

Not Applicable

4.4.10.3 E:AMPLE

T) set the IMP SEGPTR to reflect the

Crow address indicated in CROWAD:

77

8.9

LAC CROWAD

TAD (400000)

CALL LOOKUP

LAC ANSWER

DAC CROWAD

78

9b

/LOAD TLS

1f ADD 400000

/GO TO LOOKUP ROUTINE

/LOAD SEGMENT ADDRESS

/RESTORE IN CROWAD

/CONTINUE

4.4.11 MEAN

4.4.11.1 FUNCTION

MEAN enables the user to determine the

arithmetic mean of a series of values.

4.4.11.2 CALLING SEQUENCE

4.4.11.2.1 PARAMETERS

lf,2 series of values must

be terminated by an asterisk (ASCII 252).

Care must be taken to insure that the sum

of the values will not cause AC overflow.

SOURCE = Starting address of series of

values.

4.4.11.2.2 CALL

CALL MEAN

4.4.11.2.3 NORMAL RETURN

MEAN returns to the location

immediately following the call with the

parameter:

ANSWER = Arithmetic mean

4.4.11.2.4 ERROR RETURN

None

4.4.11.3 EXAMPLE

To determine the mean of a series of

numbers beginning in location BUFFER:

LAC (.AST) /LOAD AN ASTERISK

DAC ENDIBUF /STORE AT END OF BUFFER

LAC (BUFFER) /LOAD BEGINNING ADDRESS

DAC SOURCE /STORE IN SOURCE

CALL MEAN /GO TO AVERAGE THE VALUES

/CONTINUE

79

91

BUFFER 1 /OCTAL VALUES TO BE AVERAGED

2 /

3 /

4 /

5 /

6 /

7 /

10 /

ENDBUF 252 /TERMINATOR

BO

92

4.4.12 MOVE

4.4.12.1 FUNCTION

MOVE moves the contents of one or more

locations to another set of locations.

4.4.12.2 CALLING SEQUENCE

4.4.12.2.1 PARAMETERS

SOURCE = Address of sending

area

RECEVE = Address of

receiving area

The end of the area to be moved must be

marked by a lamtion containing an

asterisk.

4.4.12.2.2 CALL

CALL MOVE

4.4.12.2.3 NORMAL RETURN

MOVE returns to the

location following the eall.

4.4.12.2.4 ERROR RETURN

None

4.4.12.3 EXAMPLE

To move data from AREA1 to AREA2:

LAC (AREA1)

DAC SOURCE

LAC (AREA2)

DAC RECEVE

CALL MOVE

81

/LOAD ADDRESS OF SENDING AREA

/STORE IN SOURCE

/LOAD ADDRESS OF RECEIVING

AREA

/STORE IN RECEVE

/CALL MOVE ROUTINE

/CONTINUE

AREA L 301 /AREA1 BEFORE AND AFTER MOVE

302 /

303 /

304 /

252 /

AREA 2 0 /AREA2 BEFORE MOVE

0

0

0

0

0

0

AREA 2 301 /AREA2 AFTER MOVE

302

303 /

304

0 /NOTE THAT THE ASTERISK IS

NOT MOVED

0

82

94

4.4.13 MULTIP

4.4.13.1 FUNCTION

MULTIP (MULTIPLY) multiplies one value

by another.

4.4.13.2 CALLING SEQUENCE

4.4.13.2.1 PARAMETERS

SOURCE = Multiplicand

RECEVE = Multiplier

4.4.13.2.2 CALL

CALL MULTIP

4.4.13.2.3 NORMAL RETU'iN

MULTIP returns to the next

location following the call with the

following parameter:

ANSWER = Product

4.4.13.2.4 ERROR RETURN

None

4.4.13.3 EXAMPLE

To multiply 138 by 108:

LAC (13) /LOAD MULTIPLICAND

DAC SOURCE /STORE IN SOURCE

LAC (10) /LOAD MULTIPLIER

DAC RECEVE /STORE IN RECEVE

CALL MULTIP /CALL MULTIPLY ROUTINE

LAC ANSWER /CONTINUE

83

95

4.4.14 RANDOM

4.4.14.1 FUNCTION

RANDOM generates a 1- to 6-digit

random octal number.

4.4.14.2 CALLING SEQUENCE

4.4.14.2.1 PARAMETERS

One in-line parameter to

specify the width of the random number

must be included in the call on RANDOM.

4.4.14.2.2 CALL

CALL RANDOM

1, 2, 3, 4, 5, or 6

/FIELD WIDTH

4.4.14.2.3 NORMAL RETURN

RANDOM returns to the

location following the call with the

random number in ANSWER.

4.4.14.2.4 ERROR RETURN

None

4.4.14.3 EXAMPLE

To generate a 4-digit random number:

CALL RANDOM /CALL RANDOM ROUTINE

4 /FOR A 4-DIGIT NUMBER

LAC ANSWER /CONTINUE

84

96

4.4.15 TIME1

4.4.15.1 FUNCTION

TIME1 returns the complimented time-

of-day. TIME1 is usually used in conjunction with

the TIME2 routine to determine the elapsed time

(latency) between one event and another.

4.4.15.2 CALLING SEQUENCE

4.4.15.2.1 PARAMETERS

None

4.4.15.2.2 CALL

CALL TIME1

4.4.15.2.3 NORMAL RETURN

TIME1 returns to the

location following the call with the

parameter:

TIME = Complimented TOD

4.4.15.2.4 ERROR RETURN

None

4.4.15.3 EXAMPLE

To obtain the complimented time-of-day:

CALL TIME1

(Normally, some input device is activated here

for a subject or user response after which TIME2

is called.)

ES

4.4.16 TIME2

4.4.16.1 FUNCTION

TIME2, when used in conjunction with

TIME1, enables the user to determine the elapsed

time between one event and another.

4.4.16.2 CALLING SEQUENCE

4.4.16.2.1 PARAMETERS

TIME = Complimented TOD

obtained at same previous event by

TIME1

4.4.16.2.2 CALL

CALL TIME2

4.4.16.2.3 NORMAL RETURN

TIME2 adds the complimented

time-of-day in the "TIME" cell (obtained

by TIME1) to the current time, deposits

the result in the "TIME" cell, and

returns to the user.

NOTE: Latency is returned in

thousandths of seconds with the assumed

decimal point between the third and

fourth octal digits.

4.4.16.2.4 ERROR RETURN

None

4.4.16.3 EXAMPLE

Assuming TIME1 has been called at some

previous point, a tall may be made to TIME2 to

obtain a latency value:

CALL TIME2 /GO FOR LATENCY

LAC TIME /LOAD THE LATENCY

/EVALUATE

86

9

4.4.17 TOTAL

4.4.17.1 FUNCTION

TOTAL computes the sum of a series of

values.

4.4.17.2 CALLING SEQUENCE

4.4.17.2.1 PARAMETERS

SOURCE = Beginning address

of the list of

numbers

NOTE: The list: of numbers must be

terminated by an asterisk.

4.4.17.2.2 CALL

CALL TOTAL

4.4.17.2,3 NORMAL RETURN

TOTAL returns to the

location following the call with the

following parameter:

ANSWER = Sum of the series of numbers

4.4.17.2.4 ERROR RETURN

None

4.4.17.3 EXAMPLE

To find the sum of a series of

numbers beginning at NUMLST:

LAC (NUMLS1) /LOAD THE BEGINNING ADDRESS

OF THE NUMBERS

DAC SOURCE /PUT IT IN SOURCE

CALL TOTAL /CALL TOTAL ROUTINE

LAC ANSWER /CONTINUE

. /

87

99

NUMLST 1036 /BEGINNING OF LIST OF NUMBERS

12 /

364 /

721 /

53047

33 /

252 /LIST TERMINATED BY AN

ASTERISK

88

100

REFERENCES

Judd, Wilson A. The development of an on-line laboratory for CAI

and behavioral research (1964-1968). Technical Report.

Pittsburgh, Pennsylvania: Learning Research and Development

Center, University of Pittsburgh, 1969.

Nemitz, Bertram P. SKOOLBOL: A simplified user's language for

programming the PDP-7. Working Manual. Pittsburgh,

Pennsylvania: Learning Research and Development Center,

University of Pittsburgh, 1968

89

101,

APPENDIX A: RESERVED WORDS

LOCATION NAMES

ACSAVE PUSHJ3 *SKEND

ADRESS RECEVE SLIDE

ANSWER REMAIN SOURCE

COMMON RETADD STACK

CONTEN *SKCELL STKBSE

ITEM *SKC1 STKPTR

PUSHJ TIME

PUSILI2 *SKCS6 TRNVEC

*All tags beginning with the letters "SK" are reserved for IMP.

ROUTINE NAMES

BACKUP EXPO MEAN SETUP

BINDEC FEED MOVE SHOLET

CHECK1 FIND MULTIP SKIP

CLEAR GETKEY MUMBLE SPACE

DECBIN LITOFF OBTAIN SPACEB

DEFINE LITON PARAM STEPUP

DISK LOAF POPJ STORE

DISPLA LOCATE PRINT TAPE

DIVIDE LOGOFF PUNCH° TIME1

DO LOGON RANDOM TIME2

ERASE LOGOND READKY TOTAL

ERROR LOGONT RELESE TYPE

EXCEPT LOOKUP SAVE TYPKEY

TUCH

90

LOCATION
NUMBER

APPENDIX B:

DEVICE CONTENT

I/O PARAMETER LISTS

USAGE

1 SCREEN 300001 STORAGE MODE, TEXT, UNIT ONE

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 KEYBOARD 200001 TIME DELAY, UNIT ONE

10 0

11 0

12 TOUCH 1 UNIT ONE

13 0

14 0

IS 0

16 0

17 0

18 PROJECTOR 1200 UNIT ONE, SUSPEND

19 2200 UNIT TWO, SUSPEND

20 0

21 0

22 TTY/DPHONE 240001 READ, UNIT ONE, TIME DELAY, ECHO

23 240002 READ, UNIT TWO, TIME DELAY, ECHO

24 240003 READ, UNIT THREE, TIME DELAY, ECHO

25 400001 PRINT, UNIT ONE, SUSPEND

26 400002 PRINT, UNIT TWO, SUSPEND

27 400003 PRINT, UNIT THREE, SUSPEND

28 0

29 0

91

10G

LOCATION
NUMBER DEVICE CONTENT USAGE

30 0

31 CROW 1 UNIT ONE

32 0

33 0

34 0

35 0

36

37 0

38 PUNCH 400000 SUSPEND, PUNCH ASCII

39 0

40 PRINTER 400000+ SUSPEND, COMM CELL ADDRESS

COMM CELL

41 0

42 0

43 MAGTAPE 0

44 0

45 DISK 0

46 0

47 0

51 0

52 0

53 COMM CELL COMM CELL ADDRESS

54 COMCEL 0 COMM CELL ONE

55 COMCEL 0 COMM CELL TWO

92

10 4,

NUMBER

APPENDIX C: ERROR CODES

SIGNIFICANCE
GENERATING

ROUTINE

100 GRAB ERROR-SCREEN OBTAIN

101 GRAB ERROR-KEYBOARD OBTAIN

102 GRAB ERROR-TOUCH OBTAIN

103 GRAB ERROR-HYSPRJ OBTAIN

104 GRAB ERROR-BAGTEL/DPHONE OBTAIN

105 GRAB ERROR-CROW OBTAIN

106 GRAB ERROR-PUNCH OBTAIN

107 GRAB ERROR-PRINTER OBTAIN

110 TO BE ASSIGNED

111 TO BE ASSIGNED

112 TO BE ASSIGNED

113 TO BE ASSIGNED

114 RELEASE ERROR-SCREEN RELESE

115 RELEASE ERROR-KEYBOARD RELESE

116 RELEASE ERROR-TOUCH RELESE

117 RELEASE ERROR-HYSPRJ RELESE

120 RELEASE ERROR-BAGTEL/DPHONE RELESE

121 RELEASE ERROR-CROW RELESE

122 RELEASE ERROR-PUNCH RELESE

123 RELEASE ERROR-PRINTER RELESE

124 TO BE ASSIGNED

125 TO BE ASSIGNED

126 TO BE ASSIGNED

127 TO BE ASSIGNED

130 REQUEST ERROR-SCREEN DISPLA

131 REQUEST ERROR-KEYBOARD READKY

132 REQUEST ERROR-TOUCH TVCH

133 REQUEST ERROR-SPEAK MUMBLE

134 REQUEST ERROR-PUNCH PUNCHO

93

105:

NUMBER SIGNIFICANCE
GENERATING

ROUTINE

135 REQUEST ERROR-PRINTER PRINT

136 INVALID DISK COMMAND DISK

137 REQUEST ERROR-DISKUS DISK

140 ATTEMPT TO OPEN FOURTH FILE DISK

141 TO BE ASSIGNED

142 REQUEST ERROR-PROJECTOR 1 LOCATE

143 REQUEST ERROR-PROJECTOR 2 LOCATE

144 TO BE ASEIGnED

145 TO BE ASSIGNED

146 REQUEST ERROR-TELETYPE 1-PRINT TYPE

147 REQUEST ERROR-TELETYPE 2-PRINT TYPE

150 REQUEST ERROR-TELETYPE 3-PRINT TYPE

151 REQUEST ERROR-TELETYPE 1-READ GETKEY

152 REQUEST ERROR-TELETYPE 2-READ GETKEY

153 REQUEST ERROR-TELETYPE 3-READ GETKEY

154 TO BE ASSIGNED

155 TO BE ASSIGNED

156 ATTEMPT TO STACK MORE THAN FIVE MUMBLE

CROW MESSAGES

157 ATTEMPT TO DIVIDE BY ZERO DIVIDE

160 PHYSICAL TAPE DRIVE FAILURE TAPE

161 MAGTAPE PARITY ERROR TAPE

162 MAGTAPE OTHER ERROR TAPE

163 PUSH) STAKC OVERFLOW PUSH)

164 PUSHJ STACK UNDERFLOW POPJ

165 ATTEMPT TO ALTER NONEXITENT EXCEPT

PARAMETER

166 TO BE ASSIGNED

167 NESTING MORE THAN THREE DEEP DO

170 UNNESTING MORE THAN THREE DEEP DO

171 NO "FINISH" PARAMETER SETUP

94

100

GENERATING
NUMBER SIGNIFICANCE ROUTINE

172 ILLEGAL RETURN ADDRESS INCREMENT STEPUP

173 TO BE ASSIGNED

174 TO BE ASSIGNED

175 TO BE ASSIGNED

176 TO BE ASSIGNED

177 TO BE ASSIGNED

95

107

MNEMONIC

APPENDIX D: IMP EQUIVALENCES

ASCII CODE EQUIVALENCES

OCTAL VALUE MEANING

.A 301 UPPER CASE A

.B 302 UPPER CASE B

.0 303 UPPER CASE C

. 13 304 UPPER CASE D

.E 305 UPPER CASE E

. F 306 UPPER CASE F

.G 307 UPPER CASE G

.ii 310 UPPER CASE H

.I 311 UPPER CASE I

.J 312 UPPER CASE J

.K 313 UPPER CASE K

.L 314 UPPER CASE L

.M 315 UPPER CASE M

.N 316 UPPER CASE N

.0 317 UPPER CASE 0

.P 320 UPPER CASE P

.4 321 UPPER CASE Q

. R 322 UPPER CASE R

.S 323 UPPER CASE S

. T 324 UPPER CASE T

.0 32S UPPER CASE U

.V 326 UPPER CASE V

.W 327 UPPER CASE W

.X 330 UPPER CASE X

.Y 331 UPPER CASE Y

.Z 332 UPPER CASE Z

.ZERO 260 ZERO

.ONE 261 ONE

96

108

MNEMONIC OCTAL VALUE MEANING

.TWO 262 TWO

.THREE 263 THREE

.FOUR 264 FOUR

.FIVE 265 FIVE

.SIX 266 SIX

.SEVEN 267 SEVEN

.EIGHT 270 EIGHT

.NINE 271 NINE

. EXC 241 EXCLAMATION

.QOT 242 QUOTE

.NOS 243 NUMBER SIGN

IDOL 244 DOLLAR SIGN

. PRC 245 PERCENT

.AMP 246 AMPERSAND

. APS 247 APOSTROPHE

. LPR 250 LEFT PARENTHESIS

. RPR 251 RIGHT PARENTHESIS

.AST 252 ASTERISK

. PLU 253 PLUS SIGN

. COM 254 COMMA

.MIN 255 MINUS SIGN

.PER 256 PERIOD

. S LH 257 SLASH

.COL 272 COLON

. SC L 273 SEMI -COLON

. LTH 274 LESS THAN

EQU 275 EQUAL SIGN

.GTH 276 GREATER MN

.QUS 277 QUESTION MARK

. ATS 300 AT SIGN

. LBR 333 LEFT BRACKET

97

109

MNEMONIC OCTAL VALUE MEANING

.BSL 334 BACKWARD SLASH

.RBR 335 RIGHT BRACKET

.UAR 336 UP ARROW

.LAR 337 LEFT ARROW

.LF 212 LINEFEED

.CR 215 CARRIAGE RETURN

.SP 240 SPACE

.R0 377 RUBOUT

98

110

INSTRUCTION EQUIVALENCES

EQUIVALENCE VALUE MEANING

FINISH 777777 LIST' TERMINATOR

TTY1 1 LOGICAL TELETYPE OR DATAPHONE #1

TTY2 2 LOGICAL TELETYPE OR DATAPHONE 02

TTY3 3 LOGICAL TELETYPE OR DATAPHONE #3

PROJ1 1 LOGICAL PROJECTOR #1

PROJ2 2 LOGICAL PROJECTOR #2

TOF 500000 TOP-OF-FORM

SINGLE 204 SINGLE SPACING (13210 CHAR/LINE)

DOUBLE 604 DOUBLE SPACING (13210 CHAR/LINE)

TRIPLE 1204 TRIPLE SPACING (13210 CHAR/LINE)

CREATE 1 OPEN NEW DISK FILE

OPEN 2 OPEN OLD DISK FILE

CLOSE 3 CLOSE DISK FILE

DELETE 4 CLOSE AND DELETE DISK FILE

BACK 5 BACKSPACE RECORD(S)

FORWRD 6 SKIP RECORD(S) FORWARD

READ 7 READ ONE RECORD

WRITE 10 WRITE ONE RECORD

EOF 11 SKIP FORWARD TO END-OF-FILE

REWIND 12 SKIP BACKWARD TO BEGINNING-OF-FILE

WROF 13 WRITE ONE RECORD AT END-OF-FILE

99

in

APPENDIX E: CRT CHARACTER SIZE CHART

CHAR. SIZE SPACES (HORIZONTAL) LINES (VERTICAL)

3 28 13

4 21 10

5 17 8

6 14 6

7 12 5

100

112

